

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Characterization of Soil Organic Carbon in Long-Term Amendment Trials

O. Francioso^a; S. Sánchez-Cortés^b; G. Corrado^b; P. Gioacchini^a; C. Ciavatta^a

^a Dipartimento di Scienze e Tecnologie Agroambientali, Università degli Studi di Bologna, Bologna, Italy

^b Instituto de Estructura de la Materia, CSIC, Madrid, Spain

To cite this Article Francioso, O. , Sánchez-Cortés, S. , Corrado, G. , Gioacchini, P. and Ciavatta, C.(2005) 'Characterization of Soil Organic Carbon in Long-Term Amendment Trials', *Spectroscopy Letters*, 38: 3, 283 — 291

To link to this Article: DOI: 10.1081/SL-200058704

URL: <http://dx.doi.org/10.1081/SL-200058704>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Characterization of Soil Organic Carbon in Long-Term Amendment Trials

O. Francioso

Dipartimento di Scienze e Tecnologie Agroambientali, Università degli Studi di Bologna, Bologna, Italy

S. Sánchez-Cortés and G. Corrado

Instituto de Estructura de la Materia, CSIC, Madrid, Spain

P. Gioacchini, and C. Ciavatta

Dipartimento di Scienze e Tecnologie Agroambientali, Università degli Studi di Bologna, Bologna, Italy

Abstract: In the current study, total organic carbon (TOC) analysis and spectroscopic characterization (IRMS, DRIFT, and SERS) are applied to investigate the molecular changes in humic acids (HA) extracted from soil samples amended for more than 30 years with cattle manure (CM), cow slurries (CS), and crop residues (CR). All samples are compared to the unamended (T) sample. A variation in soil TOC percentage occurs in all samples, but a significant ($P < 0.05$) accumulation of C is observed only in CM. The TOC $\delta^{13}\text{C}$ values appeared progressively less negative in all samples with respect to T. The DRIFT and SERS analyses of HA revealed a change in oxygenate groups (such as COO^- and OH) in the amendment with CS and CR. These results suggest how amendment might affect both C accumulation and the HA structure.

Keywords: $\delta^{13}\text{C}$ isotopic ratio-mass spectrometry, DRIFT, humic acids, SERS, soil organic matter

Received 4 May 2004, Accepted 1 December 2004

This paper was by special invitation as a contribution to a special issue of the journal entitled “Application of Spectroscopic Methods to Environmental Problems.” The special issue was organized by Professor Peter A. Tanner, Professor in the Department of Biology and Chemistry at City University of Hong Kong.

Address correspondence to O. Francioso, Dipartimento di Scienze e Tecnologie Agroambientali, Università degli Studi di Bologna, V.le Fanin 40, Bologna 40126, Italy. Fax: +39-051-2096203; E-mail: ornella.francioso@unibo.it

INTRODUCTION

Carbon flow through the soil organic matter (SOM) cycle is considered a major prospect for using the soil as a sink for carbon.^[1] The accumulation of SOM depends on several variables such as pedo-climatic conditions, vegetation, and agricultural practices. It is widely accepted that the addition of organic amendments and crop rotation are two traditional farming practices employed to increase soil organic carbon (C) content.^[2,3] Chemical and radioactive isotopes analyses have been performed to evaluate the dynamics of C and its residence time in soil.^[1] However, this approach gives a partial picture of the pathways of changes in SOM. To further broaden our understanding of SOM, a study of its molecular structure is required. The chemical composition of SOM is poorly understood because of its chemical complexity. To obtain a dynamic picture of SOM, information is needed on the molecular structure of its humate fraction. This fraction is relatively resistant to the degradation process and, for this reason, is considered a main C sink of soil.

Spectroscopic techniques are powerful tools in distinguishing individual molecular structural differences in a heterogeneous organic mixture. In particular, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is considered one of the most sensitive IR techniques for analysis of SOM and humic substances from different origins.^[4-8] Additional information was obtained using surface-enhanced Raman spectroscopy (SERS).^[7-9] The Raman study on roughened metal surface offers an additional advantage: the enhancement of those vibrational modes that are placed closer to the surface; it affords very valuable information about the molecules adsorbed on metal surface as well as their conformation.^[9,10] Moreover, the use of stable isotope ratio, $\delta^{13}\text{C}$, has allowed examination of the biogeochemical transformation occurring in soil.^[11] The basis of this approach is that each individual organic compound in organic matter inherits a specific isotopic ratio resulting from its natural origins and its postdepositional transformation pathway.^[11]

The main goal of this work is to use vibrational spectroscopy (DRIFT and SERS) and $\delta^{13}\text{C}$ isotopic ratio-mass spectrometry (IRMS) to evaluate the changes in molecular structure of humic acids extracted from soil treated for more than 30 years with cattle manure (CM), cow slurries (CS), and crop residues (CR).

MATERIALS AND METHODS

The soil samples were taken from plots of a field experiment that had been in progress for more than 30 years at the University of Bologna, Agricultural Faculty's farm. The experimental design included plots amended during a 30-year period with cattle manure (CM), cow slurries (CS), and crop residues (CR) constituted of wheat straw or cornstalks (each biomass

followed in succession), and unamended soil as the control (T).^[12] Analyses were carried out on soil samples taken from (i) unamended soil in 1972 (T₀), (ii) after 30 years (T₃₀), and (iii) after a 30-year period of amendment with CM, CS, and CR. Humic acids were extracted by soil samples using 0.5 M sodium hydroxide as described in a previous paper.^[8] Humic acids were freeze-dried before analysis.

Total Organic C and $\delta^{13}\text{C}$

Total organic C in soils and HA fractions were measured in an elemental analyzer (Thermo Finnigan model EA 1110, Bremen, Germany). The percentage of C in the sample was calculated by using acetanilide as a certified standard containing 71.09% of carbon. The HA samples were weighed in tin capsules and directly analyzed, whereas the soil samples were pretreated with 6 M HCl in order to eliminate the carbonate-bound C. About 10 mg of dry soil finely ground was weighed in silver capsules placed on a cast iron plate. A few drops of acid solution were added directly to the capsules, and the plate was heated at 80°C until the soil was dry. The samples were measured with continuous flow-isotope ratio mass spectrometry (CF-IRMS) by entering the CO₂ from elemental analyzer into an isotope ratio mass spectrometer (IRMS) model (Delta Plus Thermo Electron, Bremen, Germany). The C isotope values were expressed in delta notation (δ), where: δ (‰) = $[(R_{\text{sample}}/R_{\text{standard}}) - 1] \times 1000$, and R_{sample} and R_{standard} are ¹³C/¹²C of the sample and standard, respectively. Delta ¹³C is relative to the Vienna pee dee belemnite (VPDB) standard.^[13] All measurements were conducted in triplicate for each sample. The reproducibility of the delta ¹³C values of the samples were, in 90% of the cases, better than 0.1‰. The coefficient variation was <0.1%. Duncan's multiple comparison procedure was performed to discriminate statistically significant differences among the means.

DRIFT Spectroscopy

The spectra were recorded with a Nicolet Impact 400 FT-IR Spectrophotometer (Madison, WI, USA) equipped with an apparatus for diffuse reflectance (Spectra-Tech. Inc., Stamford, CT, USA).^[8]

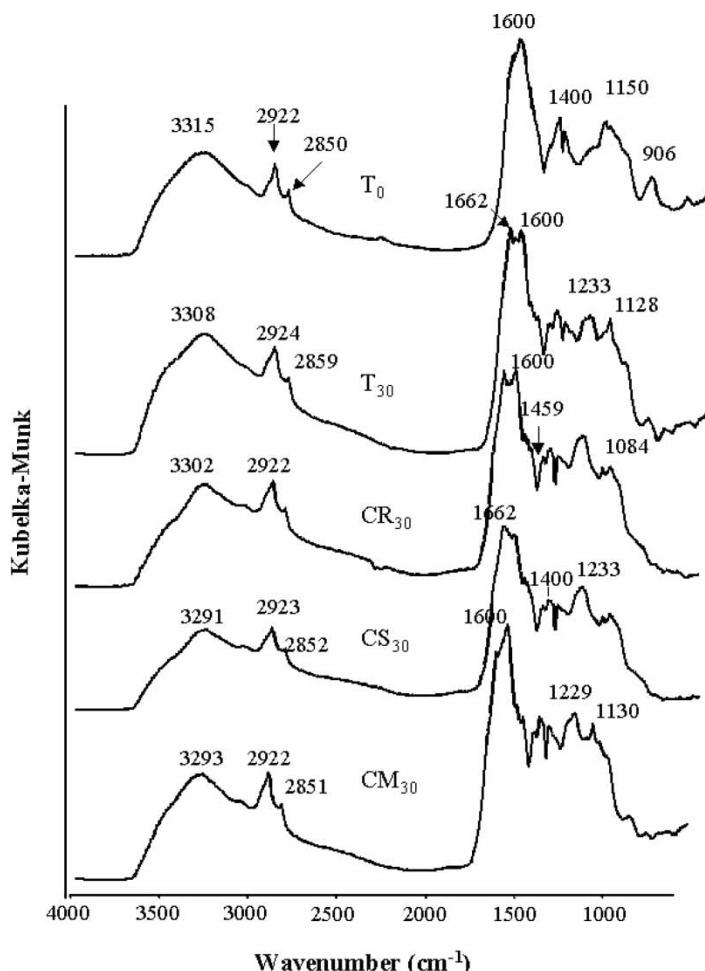
SERS Spectroscopy

Colloidal silver nanoparticles were prepared by using hydroxylamine hydrochloride as reducing agent.^[14] The procedure for sample preparation has been described by Sanchez-Cortes et al.^[9] The SERS spectra were recorded

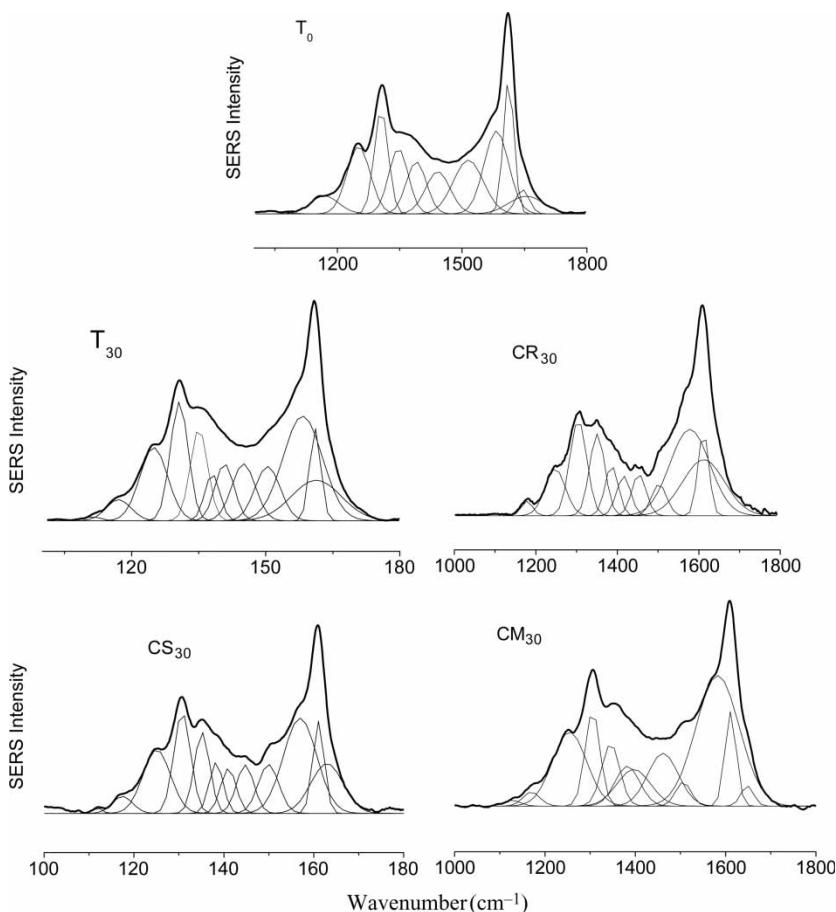
using a Renishaw Raman Microscope System RM2000, Gloucestershire, England, using the macro configuration equipped with an electrically refrigerated CCD camera. The 514.5-nm line of an Ar⁺ laser was used. The laser power in the sample was 2.0 mW. Spectral resolution was 2 cm⁻¹.

RESULTS AND DISCUSSION

The total organic C (TOC), $\delta^{13}\text{C}$ of TOC, and $\delta^{13}\text{C}$ of HA are reported in Table 1. The total organic C variation ($\Delta\%$) was evaluated by comparing the TOC of soil samples after 30 years of treatment with the TOC measured at the beginning of the experiment in the unamended plot (T₀). The plot that did not receive organic treatment (T₃₀) and those amended with CR₃₀ and CS₃₀ showed a strong decrease in TOC (Table 1), whereas a significant increase appeared in CM with respect to T₀ (+3.7%) and T₃₀ (+35%). Throughout the 30 years of amendment, the $\delta^{13}\text{C}$ of total organic C became progressively less negative (Table 1) in comparison to T₀. This increase of about 2 δ units was mainly due to the presence of corn in the farming rotation, as this C4 plant has a $\delta^{13}\text{C}$ value of -12‰. Unlike the TOC, the HA fraction was characterized by more constant $\delta^{13}\text{C}$ values, only CR₃₀ and CS₃₀ actually showed an increase in $\delta^{13}\text{C}$ values, which was, however, less pronounced than that of the TOC. This behavior would suggest that the corn-derived C, responsible for the shift of $\delta^{13}\text{C}$ of soil organic C toward less negative values, was a recent C source mainly present in the not-humic organic fraction.


Table 1. Effect of soil amended with crop residues (CR₃₀), cow slurries (CS₃₀), and cattle manure (CM₃₀) on total organic carbon (TOC), $\delta^{13}\text{C}$ of TOC and $\delta^{13}\text{C}$ of humic acids with respect to the control (T₀) at the start of the experiment and after 30 years of trials

Treatments	Soil			Humic acid $\delta^{13}\text{C}$ (‰)
	TOC (%)	$\Delta\%$ ^a	$\delta^{13}\text{C}$ (‰)	
T ₀	0.82 ± 0.01	—	-24.1 ± 0.2	-24.6 ± 0.1 ^a
T ₃₀	0.63 ± 0.005	(-23.1)	-22.0 ± 0.3 ^a	-24.5 ± 0.07 ^a
CR ₃₀	0.74 ± 0.005 ^a	(-9.8)	-21.8 ± 0.1 ^a	-23.4 ± 0.3 ^b
CS ₃₀	0.74 ± 0.001 ^a	(-9.8)	-21.5 ± 0.2 ^{a,b}	-23.1 ± 0.1 ^b
CM ₃₀	0.85 ± 0.003	(+3.7)	-22.4 ± 0.2 ^{a,b}	-24.3 ± 0.1 ^a


Means followed in the same column by the same letter are not statistically different (P < 0.05) according to Duncan's test.

^a $\Delta\%$ (%) percentage change = [(TOC₁₉₇₂ - TOC₂₀₀₂)/TOC₁₉₇₂] × 100 ± standard error.

Additional information on the effects of amendment can be gained from studies using DRIFT and SERS of HA (Figs. 1 and 2, respectively). The main regions of DRIFT spectra were attributed in accordance with previous papers.^[4,5,7,8] Specifically, all spectra are characterized by intense bands at about 2930 and 2850 cm^{-1} , assigned to ν_{as} (CH_2) and ν_{s} (CH_2 , CH_3) stretching vibrations in aliphatic structures, respectively. A strong band at about 1600 cm^{-1} is assigned to ν_{as} (COO^-) and $\nu(\text{C}=\text{C})$ in aromatic ring vibrations.^[4,5] The band intensity at 1660 cm^{-1} due to ν_{s} ($\text{C}=\text{C}$) in conjugate systems and ν_{s} ($\text{C}=\text{O}$) in ketonic groups increased in the T_{30} , CR_{30} , and CS_{30}

Figure 1. DRIFT spectra of HA extracted from unamended plots at the start of the experiment (T_0) and after 30 years (T_{30}), and amended with crop residues (CR_{30}), cow slurries (CS_{30}), and cattle manure (CM_{30}).

Figure 2. HA SERS curve fit spectra at the start of the experiment (T_0) and after 30 years (T_{30}) and amended for 30 years with crop residues (CR_{30}), cow slurries (CS_{30}), and cattle manure (CM_{30}).

spectra, while it appeared as a shoulder in the CM_{30} spectrum. We suggest that the presence of polar substituents might be the main cause of the changes in intensity and frequency of this band in the CM_{30} spectrum. In the 1460 – 1300 cm^{-1} region two bands appeared, one above 1460 cm^{-1} , the other at 1400 cm^{-1} : the first band corresponds to the $\delta(\text{CH})$ motion of aliphatic groups and the second band can be assigned to $\delta(\text{CH}_2)$ and $\nu_s(\text{COO}^-)$ symmetric stretching motion.^[4,5,8] The relative intensity of these bands is similar but slightly weaker in the CR_{30} and CS_{30} spectra compared to the CM. Furthermore, the band near 1370 cm^{-1} , assigned to the $\delta(\text{CH}_3)$ of alcohols and also to $\nu_s(\text{COO}^-)$, decreased in the CR_{30} and CS_{30} spectra. The broad band, centered at 1230 cm^{-1} , can be assigned to the $\nu(\text{C}-\text{O})$ stretching motion of phenolic groups^[7,8] and acid

dimers with electron-withdrawing groups. This band increased in the CR₃₀ and CS₃₀ as compared to the T₀ and CM₃₀ spectra. The bands between 1120 and 1084 cm⁻¹ are due to ν_s (C—OH) and C—O—C in sugar and ether group vibrations, respectively.

The SERS spectra of these HA were recorded in the 1800–1000 cm⁻¹ region at alkaline pH. This pH was used in order to help reveal the HA structure and to study, in greater detail, the different functional groups existing in the HA.^[7–9] There are clear differences that involve both the overall SERS intensity as well as the relative intensity of the different bands. For instance, a higher absolute SERS intensity was observed for T₃₀ compared to HA from amended plots. We suggest that different molecular structures are formed during amendment, as a more compact structure appeared in the CM spectrum due to the establishment of a large amount of H-bonds, while in CR, the SERS intensity was particularly weak. In order to analyze the SERS spectra of the different HA samples in further detail, the curve-fit spectra are shown in Fig. 2. These spectra showed bands of similar frequency, which correspond to the different functional groups that exist in HA. The main bands selected to carry out the comparison between samples correspond to the following regions: (a) 1650–1500 cm⁻¹, mainly attributed to C=C and C=O stretching vibrations in aromatic moieties; (b) 1460–1440 cm⁻¹, which can be attributed to (CH₂) and (CH₃) bending; (c) 1420–1400 cm⁻¹, due to both aromatic ring vibrations and to symmetric stretching vibrations of carboxylate groups; (d) 1390–1380 cm⁻¹, attributed to —COO^- groups in aromatic rings and to (CH₃) bending; (e) 1350–1250 cm⁻¹, due to aromatic C—C stretching vibrations, together with C—H bending, coupled to C—O stretching vibrations (i.e., in phenols, ether, and aromatic ester moieties); and (f) 1200–1000 cm⁻¹, due to C—C and C—O stretching vibrations in aliphatic chains.^[8,9] The analysis of the fitted spectra corresponding to T₀ and T₃₀ shows only small differences between them, mainly due to a different relative composition of aliphatic and aromatic groups. This result agrees with studies carried out by the same authors on the effect that time has on the structure and composition of SOM.^[10] The main difference between these two samples lies in the composition of the carboxylates of the 1420–1380 cm⁻¹ region, where a relative decrease of aromatic carboxylates is seen, progressing from T₀ to T₃₀. In addition, the decrease in intensity of bands in the 1350–1100 cm⁻¹ region could be related to a decrease in OH groups in the T₃₀ sample. Among all the samples, CR₃₀ exhibits the largest differences due to a greater quantity of aromatic groups and a corresponding reduction in the aliphatic component. In addition, a relative decrease in the bands below 1420 cm⁻¹ is observed for this sample. This latter result is probably related to a reduction in oxygenated functional groups and aromatic C—H bonds and an increase of the substituents in the aromatic rings. The CS₃₀ spectrum only shows slight differences compared to T₃₀, although a small increase in the aromatic component and a subsequent decrease in the aliphatic fraction is observed, together with an increase in

oxygenated functional groups. In contrast, CM showed a greater loss of aromatic rings and a remarkable increase of aliphatic rings with an increase in the content of both aromatic and aliphatic carboxylate groups.

CONCLUSIONS

The application of total organic carbon and spectroscopic (IRMS, DRIFT, and SERS) analyses has provided a coherent picture of the molecular changes taking place in humic substances induced by amendment with CR, CS, and CM in a long-term experiment. After 30 years, amendment with CM produced a higher proportion of TOC than amendment with CS or CR. The presence of corn in the farming rotation caused greater changes in TOC $\delta^{13}\text{C}$ values than in HA suggesting that the corn-derived C was probably a recent C source mainly present in the nonhumic fraction. We suggest that the structural modifications of the humic fraction are related to the type of amendment with CR and CS causing a decrease in oxygenated functional groups and aromatic C–H in contrast to CM amendment, which produced an increase in aliphatic and carboxylate groups of both aromatic and aliphatic structures.

ACKNOWLEDGMENTS

This research has been funded by University of Bologna (ex Quota 60%), XIX Cultural and Scientific Cooperation Program between Italy–Spain (2001–04), and BFM/2265/2001 from Dirección General de Investigación, Ministerio de Ciencia y Tecnología (Spain).

REFERENCES

1. Buyanovsky, G. A.; Aslam, M.; Wagner, G. H. Carbon turnover in soil physical fractions. *Soil Sci. Soc. Am. J.* **1994**, *58* (1), 1167–1173.
2. Hodges, R. D. Soil organic matter: its central position in organic farming. In *Advances in Soil Organic Matter Research: Impacts on Agriculture and the Environment*; Wilson, W. S., Ed.; The Royal Society of Chemistry: Melkham, England, 1991; pp. 355–363.
3. Paustian, K. W.; Parton, W. J.; Persson, J. Modeling soil organic matter in organic-amended and nitrogen-amended long-term plots. *Soil Sci. Soc. Am. J.* **1992**, *56* (1), 476–488.
4. Baes, A. U.; Bloom, P. R. Diffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids. *Soil Sci. Soc. Am. J.* **1989**, *53* (3), 695–700.
5. Niemeyer, J.; Chen, Y.; Bollag, J. M. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. *Soil Sci. Soc. Am. J.* **1992**, *56* (1), 135–140.
6. Capriol, P. Hydrophobicity of organic matter in arable soils: influence of management. *Eur. J. Soil Sci.* **1997**, *48* (3), 457–462.

7. Francioso, O.; Sánchez-Cortés, S.; Tugnoli, V.; Marzadori, C.; Ciavatta, C. Spectroscopic study (DRIFT, SERS and ^1H NMR) of peat, leonardite and lignite humic substances. *J. Mol. Struct.* **2001**, *565* (1–3), 481–485.
8. Francioso, O.; Sánchez-Cortés, S.; Casarini, D.; Garcia-Ramos, J. V.; Ciavatta, C.; Gessa, C. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration. *J. Mol. Struct.* **2002**, *609* (1–3), 137–147.
9. Sánchez-Cortés, S.; Francioso, O.; Ciavatta, C.; Garcia-Ramos, J. V.; Gessa, C. pH-Dependent adsorption of fractionated peat humic substances on different silver colloids studied by surface-enhanced Raman spectroscopy. *J. Colloid. Interface. Sci.* **1998**, *198* (2), 308–318.
10. Furtak, T. E.; Roy, D. The short-range mechanism of surface enhanced Raman scattering. *Surf. Sci.* **1985**, *158* (1–3), 126–146.
11. Deines, P. The isotopic composition of reduced organic carbon. In *The Terrestrial Environment*; Fritz, P., Fontes, J. C., Eds.; Elsevier: Amsterdam, 1980; pp. 329–406.
12. Francioso, O.; Ciavatta, C.; Sánchez-Cortés, S.; Tugnoli, V.; Sitti, L.; Gessa, C. Spectroscopic characterization of soil organic matter in long-term amendment trials. *Soil Sci.* **2000**, *165* (6), 495–504.
13. Coplen, T. B. Reporting of stable hydrogen, carbon and oxygen isotopic abundances. *Pure Appl. Chem.* **1994**, *66* (2), 272–276.
14. Leopold, N.; Lendl, B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. *J. Phys. Chem. B* **2003**, *107* (24), 5723–5727.

